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Introduction (warning?)
1. I’m a geophysicist. However, we should speak the same language:

Ask your questions as they come!
2. Insights into what is possible and known, and what is NOT.
3. Working across the scales:

 Sandra’s lectures.
4. Tools and results will be partly mixed.
5. Often indirect approach:

• an observation is fit by a model,
• we try to best constrain this model: inversion.
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Tools and their limitations
Table of contents
1. Seismology
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2. Potential fields

• gravity, electromagnetics
3. Geothermics
4. Borehole geophysics
5. Remote sensing
6. Numerical modelling
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1. Seismology
• etymology: study of earthquakes
• generally: propagation of elastic waves
• active ~ : we generate the energy
• passive ~ : natural source
• what can we image?
 resolution ~ λ/4

(in theory…)
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v     =         λ *        f
speed = wavelength * frequency
[m/s]  =       [m]        *     [1/s]

[Hz]

λ = v / f



Active: Reflection seismics
active source: hammer, explosion, airgun, Vibroseis, weight drop, …
recording: geophones (2D, 3D)
wave reflects back from interface

5
In: Stein and Wysession 2003, drawing with permission of Conoco



Active: Refraction seismics
active source…
geophones…
wave dives into next layer
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θR

NB: this is how A. Mohorovičić and V. Conrad identified the resp. interface (1909, 1925)



Active seismics in reality
• both reflected and refracted waves are recorded + noise + multilayer + dip + …
• simple sketch … … sophisticated and heavy processing
• goal: structure, velocities, dip, physical properties
• examples:
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Lower crust is reflective
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• Australia, Eromanga Basin
• lower crustal lenticle

Finlayson et al. 1989



Lower crust is reflective
• S. Germany, P and S waves
• layered v-model from lab data
• laminated lower crust
• compositional layering
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Holbrook 1989



Western & Central Alps
Processed, interpreted cross-sections
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Sénéchal & Thouvenot 1991

ETH Working Group 1991



Basin & Range
Interpretative cross-section
• Cenozoic extension:
• deep crust: granulite
• LC: mylonites +

3-km mafic cumulate
• sharp Moho ± p. melt
• crust:

• ~50% mafic
• ≤25% m. underplating
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Smithson 1989



Minnesota
Interpretative cross-section
• Archean crust
• weak to no reflections
• “compressional shearing 

erased earlier structures”
• Moho is compositional, 

not layered

12Smithson 1989



Geological models
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in Meissner et al. 1986

…drawn from / after seismics

Müller et al. 1977



More recently:

14

• Finnish Reflection Experiment
• seismic attributes + seismic facies
• mid-crustal deformation 

Torvela et al. 2013



More recently:
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• shear zone
• shear zone
• detachment

 attributes and facies are 
tools to help interpretation

Torvela et al. 2013



Reflective lower crust interpretation
Copying expressions from papers:
• strain-induced fabric, ductile shear zones, extensional plastic flow

• layering: igneous, lenses of partial melt, compositional

• free fluids, fluid-filled cracks
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 Deformation
 Structure
 Fluids

Seismics in your region of interest?
Exploring the Earth's Crust: History and Results of Controlled-source Seismology
Claus Prodehl and Walter D. Mooney
GSA Memoir 208, 764 pp, 2012, doi: 10.1130/MEM208



Passive: earthquake tomography
Arrival time of seismic waves  velocity anomalies in the Earth
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local earthquake tomography:
joint inversion for vel. and eqk. origin

teleseismic tomography:
inversion for velocities

distance = velocity * time

observedunknownit depends…



Alps local earthquake tomography
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Diehl et al. 2009



Credibility?
Not everything on a tomographic image is real !!!
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Resolution test: alternating +/– anomalies Synthetic test: artificial structures

Diehl et al. 2009



Passive: receiver functions
• converted waves at a discontinuity

• result:
• depth of sharp velocity changes (+, –)
• average Vp/Vs of crust (low: felsic, high: mafic, fluids?)

• 1D, 2D, 3D applications
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Passive: overview
• tomography (direct body waves): bulk velocity anomalies
• receiver functions (body wave conversions): sharp interfaces
• surface wave tomography: usually coarse resolution
• ambient noise tomography:

• bulk Vs
• may reach LC if array is large

• shear-wave (SKS) splitting:
• anisotropy, e.g. olivine CPO
• depth is usually poorly constrained

21



How thick is the Moho?
• Kaapvaal craton, Kimberley
• thickness of velocity-gradient is frequency dependent

• Moho: <2 km everywhere, locally <0.5 km

22

James et al. 2003



Earthquakes:
“Sudden brittle failure.” (?)
See discussions on:
• depth: most events are in the upper crust, but…
• rheology: lower crust is usually aseismic, but…
• temperature ( ≤ 600°C ?)
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e.g. Jackson et al. 2004 Geology and citing papers Deichmann 1992

Cooke et al. 1989

BDT    {

magma movement



Earthquakes: energy budget and rock record

24http://www.lpl.arizona.edu/~rlorenz/pseud.html

• generation of:                    waves          cracks          heat
• energy partitioning:                      ~1/3                        2/3



2. Potential fields
Gravitational and electromagnetic interactions 
can be modelled using potentials ( maths) and 
functions ( harmonic functions) satisfying the 
same equation ( Laplace equation).
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(Hm… what does this mean?)

Gravity and EM methods share similarities.



 wide range of applications
 measure of gradients
 non-unique

Remedy  : use other datasets, too!
(general recommendation)

Characteristics
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∆𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
4𝜋𝜋𝜋𝜋𝑅𝑅3 ∆𝜌𝜌

3𝑏𝑏2

Example: gravity

same ∆gpeak for:
R [km] ∆ρ [kg/m3] b [km]

1 100 2
1 25 1

0.5 100 0.7
0.5 800 2

Turcotte & Schubert
Geodynamics



• measurement gOBS

• latitude corr.

• elevation corr. free-air anomaly

• plateau corr.

• terrain corr. Bouguer anomaly

• the “most precise” geophysical measurement (~5 ppb)
• whole Earth  local anomalies

Gravity anomalies
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384’400 ± 0.02km



https://tecto.earth.unibas.ch//Members/Schmid/alps/schmid_html/fig3b_large.html

Bouguer Anomaly
all effects are reduced to sea-level

denser body: BA positive lighter body: BA negative
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Argand 1924



• main deep-reaching method: MT
• magnetotellurics, 1 mHz-100 kHz
• Earth’s natural field (Earth is 1010 better conductor than atmosphere)
• penetration depth  ∝ √ resistivity ⋅ period
• sources of interest: fluids: aqueous, brine, partial melt

graphite and other conductive materials

Electromagnetic methods
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• interaction of E and M fields
• usually near-surface applications
• problem: noisy environment

wikipedia



Seismics: reflective bright spots
(Low-Velocity Zones)

MT: high conductivity zones

 “widespread
partial melt”

 “channel flow”

Tethyan
Himalaya Lhasa Block Qiangtang BlockYT
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Partial melt in Tibet
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Rippe & Unsworth 2010
Bai et al. 2010
Wei et al. 2001



Partial melt in Tibet
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Hetényi et al. 2011

Discontinuous LVZs and regular crustal Vp/Vs
question the viability of the channel flow model



Melt?
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Sandra asked how melt could be recognized geophysically?
A few thoughts:
• need significant volume
• very likely needs to be interconnected

• conductivity
• drop in Vs
• properties depend on shape

upscaling

laboratory 
experiments

Taylor & Singh 2002



3. Geothermics
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T : (probably) the most important and the least constrained parameter in Earth

• radioactive decay of 232Th, 238U, 40K, 235U
• lithosphere
• crust: <1% volume, ~25% heat production
• heat flow [mW/m2]: it is integrated, difficult to measure
• rocks: heat production, heat conduction, heat capacity

µW / m3 W / m K J / kg K

• How about the LCC?
https://opentextbc.ca/geology



Geothermics
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The LCC is a small contributor
Čermák & Bodri 1989



Northern Alpine foreland
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Seismicity and geothermics
• events in the LCC
• good data, advanced modelling
• brittle above 450°C

600°C !!!

Deichmann and Rybach 1989



4. Borehole geophysics
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• Kola superdeep hole: 12’262 m

• drill exposed LCC

• rich choice of methods…
• electical resistivity
• gamma rays, neutron
• sonic waves
• caliper, optical televiewer
• T, pH, oxygen, redox
• …

• velocity, density
• clay, fluid, H content
• stress
• permeability
• porosity
• …

w
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COSC-1 and anisotropy
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• Collisional Orogeny in the Scandinavian Caledonide, hole 1
• active seismic profile + migration
• seismic properties of cored rock samples: anisotropy

Hedin et al. 2012 Wenning et al. 2016

https://wiki.seg.org/wiki/Borehole_geophysics

VSP



5. Remote sensing
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Monitoring Earth surface deformation

GNSS

InSAR

• <mm accuracy positioning (optimally)
• relative motion of a point, 3 components
• permanent or campaign measurements

• ~mm-cm accuracy
• relative deformation map
• regular scans
• high spatial resolution

Lu and Dzurisin 2014



Inferring rheology
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Lake water loss causes surface rebound

• lake level: –3 m

• numerical simulations of physical properties

• upper crustal Young modulus 50±9 GPa, 
lower than seismologically inferred            
 fluids, rock damage

2003–2010 map 
ENVISAT InSARZhao et al. 2016



6. Numerical modelling
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Set up a model to test scenarios, explain observations:
• discipline: physical ± chemical ± …
• approach: thermo-kinematic, thermo-dynamic, …
• implementation: finite-difference, finite element, …

• post-seismic creep of the lower crust to fit surface deformation
• rheology of the lithosphere to explain plate flexure

• the limitation is your imagination (and computer affinity?)



Escher & Beaumont 1997

Conclusions
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• Many geophysical tools are standard analyses, some applicable to the LCC
• Tendency: 2D + isotropic  3D + anisotropic media
• Main limitations: depth, resolution, temperature
• There are many unknowns  strong need to combine several methods



6. Numerical modelling: rheology and flexure
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Debate on rheology: the long-term strength of the mantle

Burov & Watts, 2006

WEAK

STRONG

Hetényi et al. 2006

We need proper plate geometries

150 Ma            500 Ma



Flexure of the India plate
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Approach and geometries

Imaging the flexure
(Ganges Basin)

Other a priori
information

Constraints
on geometry

Thermo-mechanical
modelling

Various
rheologies

Results

Hetényi et al. 2006



Imaging the flexure
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Receiver function imaging: Moho, foreland basement (4.5 km), plate dip

Hetényi et al. 2006



Thermo-mechanical modelling
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• bending of the India plate: shortening, vertical load, various rheologies
• assessing results based on geometry and gravity anomalies

Hetényi et al. 2006



Results and constraints on geometry

46Hetényi et al. 2006



Effective elastic thickness – conclusions

47Hetényi et al. 2006

• decoupling and drop of EET from S to N
• weight of the plateau held by the mantle
• “weak mantle” rheology fails
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