

International School "Structure and Composition of the Lower Continental Crust"

Geophysical investigation of the LCC: 2. Results and questions A) Himalayas B) Ivrea zone

#### **György HETÉNYI**

University of Lausanne, Switzerland gyorgy.hetenyi@unil.ch www.unil.ch/orog3ny



Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

09.10.2019.

Pavia

The underthrusted Indian lower crust: Geophysical constraints on eclogitization

### **György HETÉNYI**

with Celso Alvizuri, Kristel Chanard, Lukas P. Baumgartner, Frédéric Herman, Rodolphe Cattin, Fabrice Brunet, Laurent Bollinger, Jérôme Vergne, John L. Nábělek, Michel Diament



Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

#### www.unil.ch/orog3ny

Unil

||||||||| **UNIL** | Université de Lausanne

Pavia

Structure and Composition of the Lower Continental Crust

09.10.2019.

#### The Himalaya-Tibet-... orogenic system



#### The Himalaya-Tibet-... orogenic system



#### The Himalaya-Tibet-... orogenic system





#### **Cross-section view**

Hetényi 2007 PhD Nábělek, Hetényi, Vergne et al. 2009 Science



# Outline

- Introduction
- The importance of local data
- Geophysical constrains on the Indian lower crust (ILC)
- Metamorphic earthquakes



Chanard et al. in review

## Local data: Moho depth

#### Are the rare deep earthquakes in Tibet in the mantle or the lower crust? ~26 events 1963-2001 M~4.8-6.4

IZS

Warm Tibetan

1500

upper mantle



Elev(km)

Depth (km)

0

50

100

India

shallow normal fault

Himalayan thrust

deep S. Tibet

Indian mid- to lower crust

500

- projections vs. local Moho depths
- different locations and contexts: (too) ambitious to give unique explanation for all events

ndian upper crust M

MCT

MBT

Depleted Indian mantle

1000

Distance (km)



90 km: schematic

100

2000

### Local data: Moho depth

Are the rare deep earthquakes in Tibet in the mantle or the lower crust?





## Local data: Geological variability

• segmentation of the Himalaya, inherited from the India plate

Hetényi et al. 2016 Sci Rep





Dasgupta et al. 1993



## Local data: Dry Indian lower crust?

#### ARTICLE

#### D01: 10.1038/s41467-018-05964-1 OPEN

Lower-crustal earthquakes in southern Tibet are linked to eclogitization of dry metastable granulite

Feng Shi<sup>1,2</sup>, Yanbin Wang<sup>1</sup>, Tony Yu<sup>2</sup>, Lupei Zhu<sup>3</sup>, Junfeng Zhang<sup>1</sup>, Jianguo Wen<sup>4</sup>, Julien Gasc<sup>5</sup>, Sarah Incel<sup>5</sup>, Alexandre Schubnel<sup>5</sup>, Ziyu Li<sup>3</sup>, Tao Chen<sup>1</sup>, Wenlong Liu<sup>1</sup>, Vitali Prakapenka<sup>2</sup> & Zhenmin Jin<sup>1</sup>



Xenolith samples from Tibet suggest that the Indian lower crust lacks hydrous minerals<sup>27</sup>, making dehydration embrittlement less likely to operate.



- xenolith sample from >600 km to N, region without underthrusting ILC
- to date we have no relevant sample of underthrusted Indian lower crust



# **Geophysical constraints on the Indian lower crust**

- Central Himalaya
- Seismological data
  → structure geometry
- Thermo-kinematic and petrological modelling
   → T, P, chem. → ρ
   ⇔ gravity data
- Can we constrain
  - Water content?
  - Reaction kinetics?



# Approach

South

Depth (km)

Equilibrated geothern

- **Central Himalaya**
- Seismological data  $\rightarrow$  structure geometry
- Thermo-kinematic and petrological modelling  $\rightarrow$  T, P, chem.  $\rightarrow \rho$ ⇔ gravity data
- Can we constrain
  - Water content?
  - **Reaction kinetics?**



CustHP feldspar Gr(HP)

Cpto(HP) feldspor On(HP) Opt(HP) q H2O

Cpx(HP) feidspie Opx(HP) 4 H2O

1000

900

4 H2O

Thermo-kinematic model Following Henry et al. 1997; Bollinger et al. 2006



Constant heat flow at the base of the model (q)

- **FEAP**: finite-element heat advection-diffusion eq.
- geometries, convergence rate are fixed
- radiogenic heat production *A*, basal heat flow *q* are varied thermal field reproduces large field datasets

Cps(HP) Pheng(HP) Gi(HP) ky coe H2O Density Cpx(HP) Pheng(HP) GITrTsl 3300 3400 2800 2900 3000 3100 3200 Gt(HP) ky law coe 2700  $(kg/m^3)$ Cpx(HP) Pheng(HP) GITrTsPg Gt(HP) 30 ky law Cpx(HP) Pheng(HP) Gt(HP) ky q H2O Dx(HP GITrTsPg Gt(HP) 25 Cpx(HP) Cpx(HP Pheng(HP) GITrTsPg Pheng(HP) GITrTsPg H Gt(HP) Gt(HP) Cpx(HP) feldspar Gt(HP) 20 H2O Pressure (kbar) BS DX(HP) eng(HP) GITrTsPg feldspar Gt(HP) zo ( GITLESPE feldspar GitHPro Bio(HP) Cpx(HP) GITrTsPg feldspar Cpx(HP) feldspar Gt(HP) Opx(HP) Gt(HP) q H2O g H2O o(HP) GITrTsPg 10 Bio(HP) GITrTsPg feldspar Gt(HP) Cpx(HP) feldspar Opx(HP) Bio(HP) GITrTsPg feldspar Opx(HP) q H2O 5 GlTrTsPg feldst Opx(HP) q 400 500 600 700 Temperature (°C) 800 900 1000 700 400 500 600 800 900

Petrogenetic grids Connolly 2005

- **Perple\_X**: Gibbs energy minimization
- mineral composition is fixed: average continental lower crust

Rudnick and Fountain 1995 Rudnick and Gao 2003

1000

- solid solution phases are fixed
- water content is varied:

30

25

20

15

10

5

Pressure (kbar)

wet (all hydrous minerals), partially hydrated (amphibolitic), dry (granulitic) 

#### Petrogenetic grids Connolly 2005



- *Perple\_X*: Gibbs energy minimization
- mineral composition is fixed: average continental lower crust

Rudnick and Fountain 1995 Rudnick and Gao 2003

- solid solution phases are fixed
- water content is varied:
  - wet (all hydrous minerals), partially hydrated (amphibolitic), dry (granulitic)

#### Petrogenetic grids Connolly 2005



- *Perple\_X*: Gibbs energy minimization
- mineral composition is fixed: average continental lower crust

Rudnick and Fountain 1995 Rudnick and Gao 2003

- solid solution phases are fixed
- water content is varied:
  - wet (all hydrous minerals), partially hydrated (amphibolitic), dry (granulitic)

# Constraining model results

- temperature at key locations ⇔ A, q
- gravity anomalies:
  - far-field fit
    - ✓ partially hydrated
  - along-profile variations

misfit in the region of interest

- eclogitization kinetics:
  - 🗴 equilibrium
  - 🗴 sluggish kinetics

✓ delay



Hetényi et al. 2007 EPSL

### Reaction kinetics – the role of water

250km

50km

В

Mafic 1wt.%H2O

3400

3300

3200

kg/m<sup>3</sup>)

Density

2900

2800

2700

3300

3200

3100

2800

2700

30

25

20

Α Lack of free water Overstepping of the plag-out reaction



Hetényi et al. 2007 EPSL

## Update on effective reaction rate



- overstepping well-constrained
- slope ~ kinetics  $\rightarrow$



## **Conclusion 1**

## Indian lower crust partially hydrated

• various local datasets and coupled modelling

# Question 2

# What are those earthquakes?

- hard to have brittle rupture at those temperatures
  - what relation to metamorphism?

### Himalayan deep-crustal earthquakes

#### Original figures of the relocated earthquakes



#### Himalayan deep-crustal earthquakes

Alvizuri and Hetényi, 2019



# Methodology: full-moment-tensor analysis



SO

## Meticulous scrutinizing of waveform fits...

Alvizuri and Hetényi, 2019

0.14

0.97

0.64

1.71

-0.13

-2.27

98

1.01

0.05

-2.22

80

2.09

-0.37

-3.24

93

1.64

0.36

0.38

3.87

1.01

81

97



#### Full-moment-tensor and uncertainty

![](_page_25_Figure_1.jpeg)

Best-fit solution away from DC towards opening crack + uncertainty

# Interpretation

tectonic (DC) ∆V=0

thermal runaway  $\Delta V^{\sim}0$ 

anticrack  $\Delta V < 0$ 

dehydration embrittlement  $\Delta V>0$ 

![](_page_26_Figure_5.jpeg)

![](_page_26_Figure_6.jpeg)

![](_page_26_Figure_7.jpeg)

![](_page_26_Figure_8.jpeg)

- lower crustal protolith reaches dehydration P-T conditions
- small amounts of H<sub>2</sub>O accumulates in pores
- increased pore pressure creates fractures (smaller, then larger)
- final large fracture opens to evacuate H<sub>2</sub>O and also slips during eqk., including/through damage (see Ben-Zion et al.)

# Comparison to palpable geological examples?

• Bergen Arcs?

Austrheim et al. 1996 EPSL

- pseudotachylytes, but dry granulite  $\rightarrow$  eclogite needs external fluids
- imaginary event across Holsnøy ~ magnitude 4

![](_page_27_Picture_5.jpeg)

Alvizuri and Hetényi, 2019

- W. Alps?
  - $\mu$ m-m documentation of dehydration–evacuation, but  $\rightarrow$  thermal runaway

![](_page_27_Picture_9.jpeg)

Plümper et al. 2017 Nat Geosci

## **Comparison to laboratory experiments?**

2017

Nat Comm

- Serpentinized peridotite: dehydration reactions drive stress-transfer Ferrand et al.  $\rightarrow$  acoustic emissions
- hydrated rock ③, but oceanic crust (and different experimental P) ullet

#### Other experiments ("but"):

- Incel et al. 2017: lawsonite-blueschist, *lws* survives the reaction and keeps H<sub>2</sub>O ۲
- Wang et al. 2017: for mantle transition zone earthquakes ۲
- Shi et al. 2018: dry rocks, T higher by 150°C
- Incel et al. 2019: dry granulite, higher P, higher T

- Proposal for an experiment:
- continental lower crustal composition
- various amounts of H<sub>2</sub>O

- cross at ca. 650°C / 2 GPa
- slow deformation rate

### Conclusions 1 & 2

## Indian lower crust partially hydrated

# Metamorphic earthquakes related to dehydration

• <u>local</u> events and data – *not* a generalization for the Tibetan Plateau

"Dehydration embrittlement changes the mechanical properties of the crust, and extends the depth of the brittle rupture domain to that of the deepest hydrated phases" (Raleigh & Paterson 1965)

## Deep crustal, intermediate depth, deep earthquakes

- dehydration embrittlement? transformational faulting? thermal runaway?
  - prevailing mechanism depends on P, T, chemistry & reactions, H<sub>2</sub>O, ...

![](_page_30_Picture_0.jpeg)

Metamorphic earthquake in the Indian lower crust beneath southernmost Tibet

# Old and new geophysical results on the Ivrea body

## **György HETÉNYI**

with Matteo Scarponi, Ludovic Baron, Théo Berthet, Jarka Plomerová, Stefano Solarino, Mattia Pistone, Luca Ziberna, Alberto Zanetti, Andrew Greenwood, Othmar Müntener

![](_page_31_Picture_3.jpeg)

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

#### www.unil.ch/orog3ny

|||||||| UNIL | Université de Lausanne

Pavia

Structure and Composition of the Lower Continental Crust

09.10.2019.

## Geological situation of the IVZ at depth

![](_page_32_Figure_1.jpeg)

Zingg et al. 1990

![](_page_32_Figure_3.jpeg)

![](_page_32_Figure_4.jpeg)

Ivrea-Verbano Zone vs. Ivrea geophysical body

How deep is the Moho? ("Can we drill it?")

## Gravity

#### **First observation**

Niethammer 1921

![](_page_33_Figure_3.jpeg)

#### Gravity

![](_page_34_Figure_1.jpeg)

Niggli 1946

![](_page_34_Figure_3.jpeg)

### **Gravity + Seismics**

Combined density and P-wave velocity models

![](_page_35_Figure_2.jpeg)

Distance, in kilometers

# Gravity

#### 3D models

![](_page_36_Figure_2.jpeg)

All models assume *constant* density difference!

## Magnetics

#### First observation: $\underline{V}$ and $\underline{H}$

• anomalous body continues under the sediments

![](_page_37_Figure_3.jpeg)

## Magnetics

Several 2D models Froidevaux & Guillaume 1979, Albert 1979, Lanza 1982, Belluso et al. 1990, Mouge & Galdeano 1991

First 3D model

Wagner et al. 1984

![](_page_38_Figure_4.jpeg)

Figure 9: Sketch of the magnetic Ivrea body.

![](_page_38_Figure_6.jpeg)

#### Magnetics – summary:

- IVZ top: 11 km with highs at 2.5-3 km
- in the S (Cuneo) 7-8 to 15 km
- does not (always) coincide with gravity
- no clear trend of magnetic susceptibility with rock type

#### Geothermics

- eighteen 2-metre probes in IVZ to obtain heat flow Haenel 1974
- rock heat production data Höhndorf 1975
- stationary thermal model Höhndorf et al. 1975

![](_page_39_Figure_4.jpeg)

- from Curie temperature depth estimates: steady-state thermal model is questioned

Speranza et al. 2016

# Seismology

#### Active seismics:

- difficult to get signal (energy scatters), WA fan refr.+inline refl. is best so far
- VP = 7.2-7.83 km/s reached at 3-14 km

Ansorge 1968, Berckhemer 1968, Giese 1968, Giese et al. 1973, Kissling 1984, ECORS-CROP DSS Group 1989, Hirn et al. 1989, Eva et al. 2015

#### Local Earthquake Tomography:

Diehl et al. 2009 VP = 7.0 km/s at 13 km, VP = 7.5 km/s at 27 km

![](_page_40_Figure_7.jpeg)

## Seismology

#### Local Earthquake Tomography:

- Potin 2016 PhD thesis VP = 7.0 km/s at 13 km, VP = 7.5 km/s at 18 km
- depth to "high velocity" in earlier works:
  - IVZ: 5+ km De Franco et al. 1997
  - South: 7-10 km

Solarino et al. 1997, Paul et al. 2001, Béthoux et al. 2007

• passive and active seismics comparison: gap in scales

![](_page_41_Figure_8.jpeg)

## Summary of past surveys

| Method             | Z to anomaly (km)                                     | Anomaly                                                                    |
|--------------------|-------------------------------------------------------|----------------------------------------------------------------------------|
| Gravity            | 0<br><5<br>~10                                        | 3000 kg/m <sup>3</sup><br>3100 kg/m <sup>3</sup><br>3300 kg/m <sup>3</sup> |
| Magnetics          | IVZ highs 2.5-3<br>IVZ elsewhere 11<br>(South 7-8-15) | no clear trend with<br>lithology                                           |
| Active seismics    | 3-14                                                  | 7.2-7.83 km/s                                                              |
| Passive seismology | 13<br>local highs: 5-7-10                             | 7.0 km/s<br>"high velocity"                                                |
| Geothermics        | 5                                                     | (model)                                                                    |

All passive geophysical data/models point to top-of-anomaly at

#### 3-10 km,

depending on location and model assumptions.

## **Recent campaigns**

- AlpArray  $\rightarrow$  too broad scale
- IvreaArray: 10 stations @5-km spacing, 207 new gravity points

![](_page_43_Figure_3.jpeg)

Scarponi et al. in prep.

# Conclusions A few pending questions...

- Is there a pattern in lower crustal earthquakes?
- How thick is the Moho transition in active orogens?
- What is below the Bird's Head?
- Which rocks constitute the IGB?

![](_page_44_Figure_5.jpeg)

- How could geologists and geophysicist cooperate (even) better?
- How could we better bridge across temporal and spatial scales?

![](_page_44_Picture_8.jpeg)