FORM PER PROGETTI BANDO DOTTORATO

1. Project title

Dynamics of the crust-mantle transition zone from the United Arab Emirates ophiolite

2. Proposer

Surname	Tribuzio
Name	Riccardo

3. Research Unit

Surname	Name	Institution
Decarlis	Alessandro	Khalifa University, Abu Dhabi, United Arab Emirates
Wu	Fu-Yuan	Chinese Academy of Sciences, Beijing, China

4. Key words

(Max. 5 - at least 2)
lower oceanic crust, sub-oceanic mantle, hydrous magmas, magmatic amphibole, Semail ophiolite

5. Abstract

(Max.1.500 characters with spaces)

Abstract

The United Arab Emirates ophiolite is a pristine natural laboratory to define the large-scale processes controlling the melt transfer from the upper mantle to the oceanic crust. The present PhD project wishes to delineate the structure, composition and dynamics of the mantle-crust transition zone from this ophiolite. In the transition zone, a nearly anhydrous sequence made up of dunites, troctolites and olivine-gabbros, classically believed to be genetically related to mid ocean ridge-type basalts, is crosscut by an intrusive sequence consisting of amphibole-bearing wehrlites, clinopyroxenites and gabbros, as well as by biotitebearing tonalites and two-mica peraluminous granites. The parental melts of the discordant intrusive sequence are thought to have a high $\mathrm{H}_{2} \mathrm{O}$ content, but there is not a consensus about the $\mathrm{H}_{2} \mathrm{O}$ origin. The hydrous melt signature might reflect a contribution of a subducting slab into a mantle wedge source, or be related to downward tectonic transport of seawater-derived fluids into a mid ocean ridge-type magma chamber. The PhD project wishes to provide a comprehensive overview on the processes leading to the compositional heterogeneity of the melts involved in the building of the mantle-crust transition zone of the United Arab Emirates ophiolite. The objective will be pursued based on an innovative methodological approach that integrates field-based investigations and petrological-geochemical studies.

